

Symbolic Computation in Spiking Neural Networks

Kraišniković Ceca Institute of Theoretical Computer Science

Graz, June 18, 2019

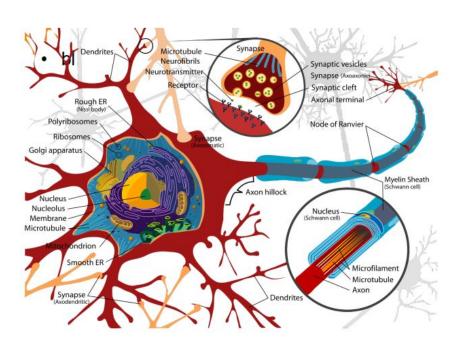
On Symbolic Computation

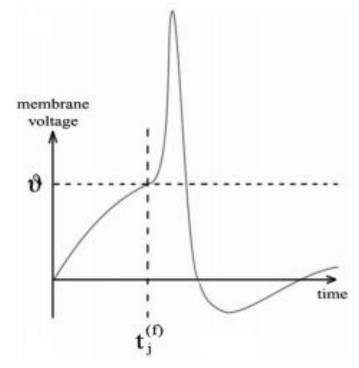
- Abstract representations of tasks
- Computation using symbolic expressions
 - Arithmetic expressions:

$$x + y$$
, $x - y$, $x * y$, ...

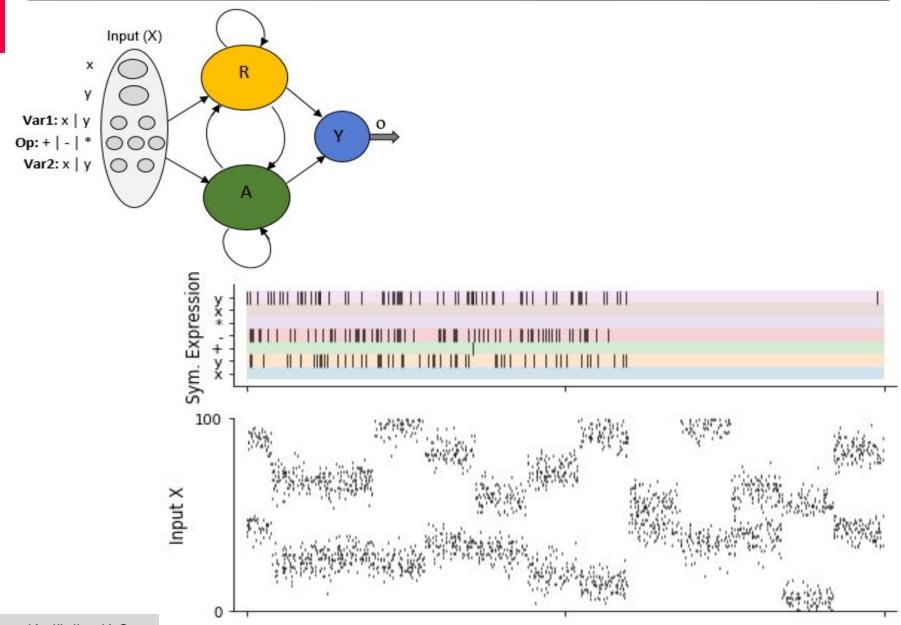
- Challenges for artificial neural networks:
 - Flexible cognitive control:

Free generalization

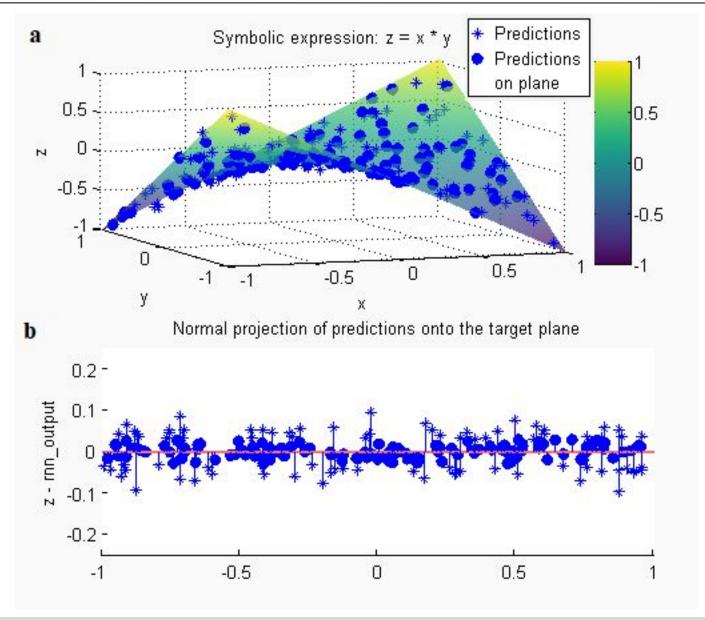

Motivation and Contribution


- Understanding intelligence
- Can symbolic computation be performed by (spiking) neural networks?
- Goal:
 - move towards computation using "higher-level" rules
- Experiment:
 - Learning to solve symbolic arithmetic expressions

Biological neuron


Leaky Integrate-and-Fire Neuron

Calculation using arith. expression y - y


Step no.	Arith. expression y – y	Network output	Mean Squared Error (MSE)
1	-0.4705 - (0.4705) = 0	-0.0014	0.0000
2	0.9398 - 0.9398 = 0	-0.0887	0.0079
50	0.2152 - 0.2152 = 0	0.0279	0.0008
51	0.1826 - 0.1826 = 0	-0.0411	0.0017
99	0.2508 - 0.2508 = 0	-0.0196	0.0004
100	0.4771 - 0.4771 = 0	-0.0306	0.0009

Calculation using arith. expression y - y

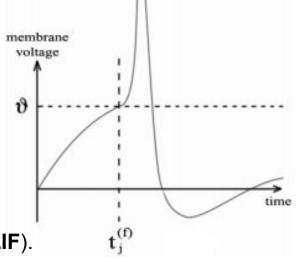
Step no.	Arith. expression y – y	Network output	Mean Squared Error (MSE)
1	-0.4705 - (-0.4705) = 0	-0.0014	0.0000
2	0.9398 - 0.9398 = 0	-0.0887	0.0079
50	0.2152 - 0.2152 = 0	0.0279	0.0008
51	0.1826 - 0.1826 = 0	-0.0411	0.0017
99	0.2508 - 0.2508 = 0	-0.0196	0.0004
100	0.4771 - 0.4771 = 0	-0.0306	0.0009

Conclusion

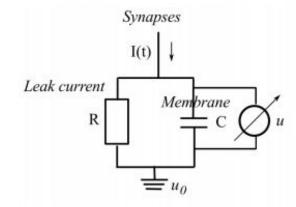
- Our model is able to store and retrieve information, and to calculate arithmetic expressions.
- Our first step to show that symbolic computation is possible with connectionist model

[G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass. Long short-term memory and learning-to-learn in networks of spiking neurons. 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montreal, Canada, 2018.]

Thank you for your attention! Questions?


Leaky Integrate-and-Fire Neuron

$$\tau_m \frac{du}{dt} = -u(t) + RI(t)$$

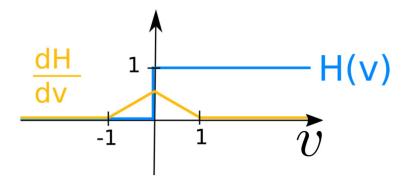

$$I_i(t) = \sum_j w_{ij} \sum_f \alpha(t - t_j^{(f)})$$

$$\alpha(s) = exp\left(-\frac{s}{\tau_s}\right)\Theta(s)$$

LIF neurons are augmented with an adaptive threshold (**ALIF**).

 τ_m -membrane time constant, u(t) - membrane voltage, I(t) - current, w_{ij} - efficacy, $t_j^{(f)}$ - firing time of neuron j, τ_s -time decay constant, $\Theta(s)$ - Heaviside step function

[Wulfram Gerstner and Werner Kistler. Spiking Neuron Models: An Introduction. Cambridge University Press, New York, NY, USA, 2002.]

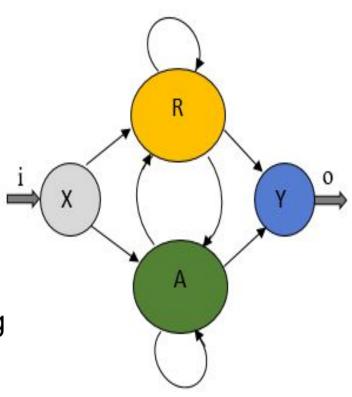


Backpropagation Through Time (BPTT)

- BPTT is used to train RNNs.
 - Gradients are propagated through many steps.
- Outputs of spiking neurons are non-differentiable.
 - Dampened pseudo-derivative can be used instead.

$$\frac{dH}{dv} = \gamma \max\{0, 1 - |v|\},\,$$

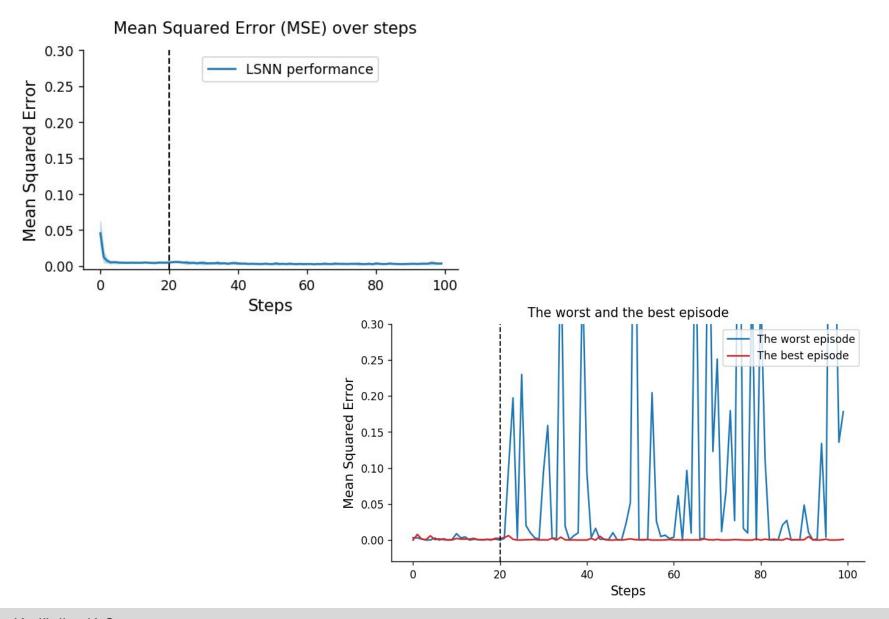
v – normalized membrane potential, γ – dampening factor.



[G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass. Long short-term memory and learning-to-learn in networks of spiking neurons. *32nd Conference on Neural Information Processing Systems (NIPS 2018), Montreal, Canada*, 2018.]

Network Architecture

- Populations of neurons:
 - X input,
 - Y output,
 - R regular spiking (LIF),
 - A adaptive spiking (ALIF).
- Inputs i encoded to spike trains
- Output o: mean traces of spiking activity



Experiment: Learning to Solve Symbolic Arithmetic Expressions

 Var_1 Operator $Var_2 = Solution$, where $Var_1, Var_2 \in \{x, y\}$, Operator $\in \{+, -, *\}$, $x, y \in [-1, 1]$.

Expression	Target function
z = x - x, $z = y - y$	Horizontal line $z = 0$
z = x + x = 2x, $z = y + y = 2y$	Linear function (with a slope)
z = x * x = x2, $z = y * y = y2$	Quadratic function (parabola)
z = x - y, $z = y - x$, $z = x + y$,	Plane (3D space)
z = x * y	Hyperbolic paraboloid

Input Encoding

- Analog values from the input range [-1, 1]
- 100 input neurons, values from the input range equally distributed
- Gaussian response with particular mean on that analog value and a constant standard deviation $\sigma = 0.002$
- Firing rate of neuron i:

$$r_i = r_{max} \exp\left(-\frac{(m_i - z_i)^2}{2\sigma^2}\right),\,$$

 $r_{max} = 200 \ Hz$, m_i - value for which neuron i is responsible, z_i - value to encode.

Neuron Model

LIF

$$\tau_m \frac{du}{dt} = -u(t) + RI(t)$$

$$I_i(t) = \sum_j w_{ij} \sum_f \alpha(t - t_j^{(f)})$$

$$\alpha(s) = A \exp\left(-\frac{s}{\tau_s}\right) \Theta(s)$$

 τ_s - time constant for decay

Adaptive LIF

$$\tau_m \frac{du_j}{dt} = -u_j(t) + R_m I_j(t)$$
$$\tau_{a,j} \frac{db_j}{dt} = b_j^0 - b_j(t)$$

 τ_m – membrane time constant $\tau_{a,j}$ – adaptation time constant

In discrete time:

$$u_{j}(t+dt) = \alpha u_{j}(t) + (1-\alpha)R_{m}I_{j}(t) - b_{j}(t)z_{j}(t)$$

$$b_{j}(t+dt) = \rho_{j}b_{j}(t) + (1-\rho_{j})z_{j}(t)$$

$$\alpha = exp\left(-\frac{dt}{\tau_{m}}\right)$$

$$\rho_{j} = \exp\left(-\frac{dt}{\tau_{g,j}}\right)$$

Value

Network Parameters

Parameter	Value
maximum firing rate	200 Hz
threshold b_i	0.03 V
dt	1 timestep
refractory steps	5 timesteps
delay steps d	5 timesteps
$ au_m$	20 ms
dampening factor	0.4 or 0.3

Parameters for all spiking neurons

Parameter	Value
	1.6
$ au_{a,j}$	1-1000ms or 1-8000ms

Additional parameters for adaptive spiking neurons

	number of recurrent neurons	250
	proportion of adaptive neurons	0.4
	dampening factor	0.4
)	tau adaptation	1-1000 ms
,	number of steps in an episode	500
	duration of steps	20 ms

Parameter

Parameter	Value
number of recurrent neurons	300
proportion of adaptive neurons	0.4
dampening factor	0.3
tau adaptation	1-8000 ms
number of steps in an episode	100
duration of steps	40 ms

Parameter Value

number of recurrent neurons proportion of adaptive neurons dampening factor 0.3 tau adaptation 1-8000 ms number of steps in an episode duration of steps 40 ms