Spike-based models for cognitive computations and robust training of memristive neural networks

PhD candidate: Ceca Kraišniković

Advisor: Dr. Robert Legenstein

July 21, 2023

PhD thesis outline

- Spike-based models for cognitive computations
 - Solving cognitive tasks involving sequences of symbols and rules
 - Using biologically plausible models: Recurrent Spiking Neural Networks (SNNs)
 - Motivation: insights into mechanisms of the brains
 - By solving cognitive, rather than sensory processing tasks
 - Testing computational capabilities of SNNs
- Brain-inspired computing

Robust training of memristive neural networks

- Using memristors as artificial synapses
- To deal with non-ideal behaviors of memristors
- Motivation: memristors are a promising technology for implementing learning in hardware, and *in-memory* computing

Part 1: Spike-based models for solving cognitive tasks

Salaj*, D., Subramoney*, A., **Kraisnikovic*, C.**, Bellec, G., Legenstein, R., & Maass, W. (2021). Spike frequency adaptation supports network computations on temporally dispersed information. *Elife*.

* joint first authors

Kraisnikovic, C., Maass, W., & Legenstein, R. (2022). Spike-based symbolic computations on bit strings and numbers. In *Neuro-Symbolic Artificial Intelligence: The State of the Art*. IOS Press.

Working memory and neural codes

- Information encoding, maintenance and manipulation
- Studied through neural codes
- Neural adaptation [1, 2]
 - Response decays upon repeated or prolonged stimulation
 - Reflects context and history dependence
 - Spike Frequency Adaptation (SFA) [3, 4]
 - On a single neuron level
 - Preceding firing activity of a neuron transiently increases its threshold

^[1] Weber, A. I., & Fairhall, A. L. (2019). The role of adaptation in neural coding. Current opinion in neurobiology.

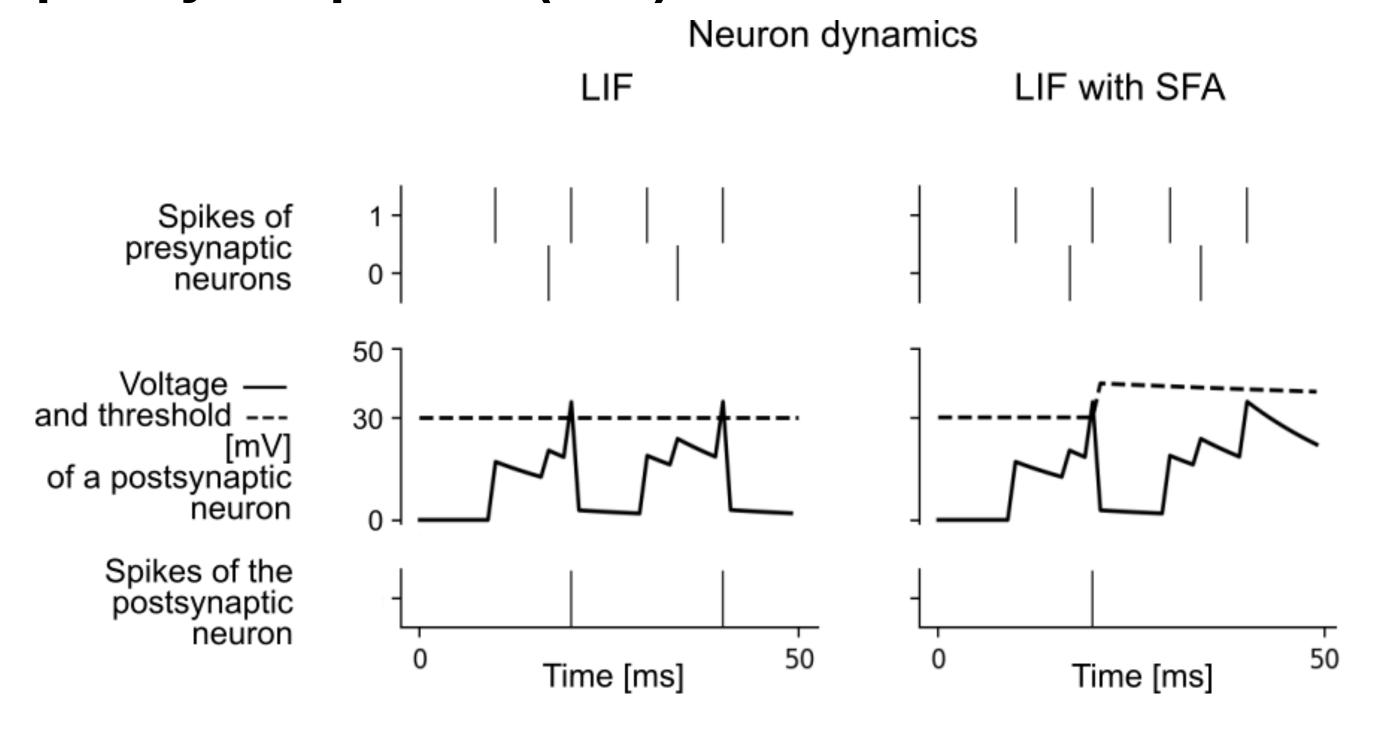
^[2] Benda, J. (2021). Neural adaptation. Current Biology.

^[3] Allen Institute. 2018b. Cell Feature Search. http://celltypes.brain-map.org/data

^[4] Pozzorini et al., 2015. Automated high-throughput characterization of single neurons by means of simplified spiking models. PLoS computational biology.

Neuron model

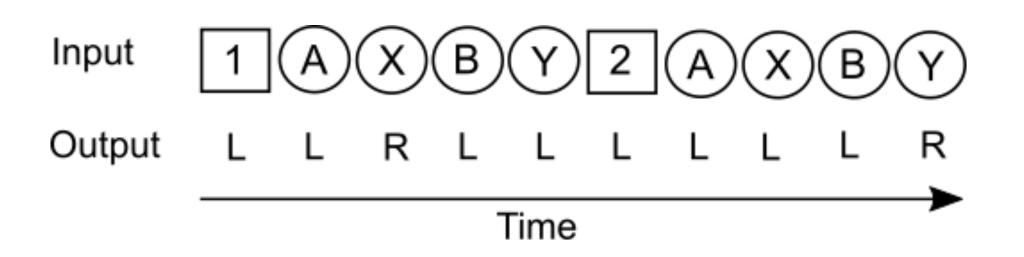
 Generalized Leaky Integrate and Fire (LIF) neuron model [5, 6] and Spike Frequency Adaptation (SFA)

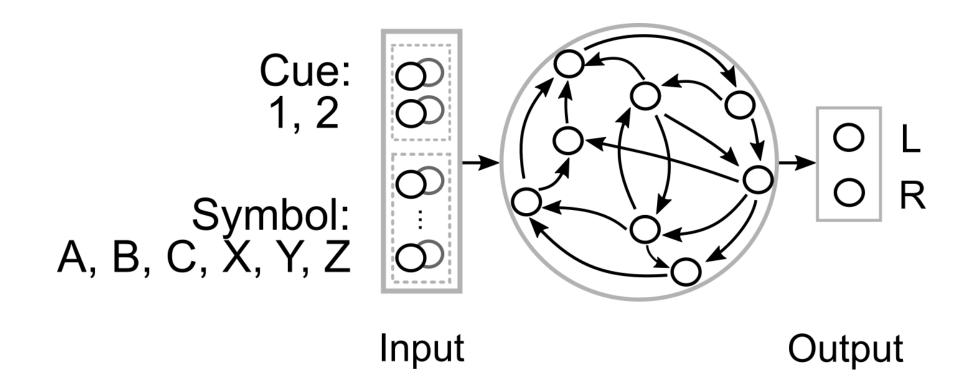


^[5] Teeter et al., 2018. Generalized leaky integrate-and-fire models classify multiple neuron types. Nature communications.

^[6] Allen Institute. 2018a. Allen Cell Types Database Technical White Paper: Glif models.

The 12AX task (simple version) [7, 8]





Under the context of:

- rule 1, observe if A is followed by X.
- rule 2, observe if B is followed by Y.

When the sequence 1-A-X or 2-B-Y is detected, press R (right button), otherwise L (left button).

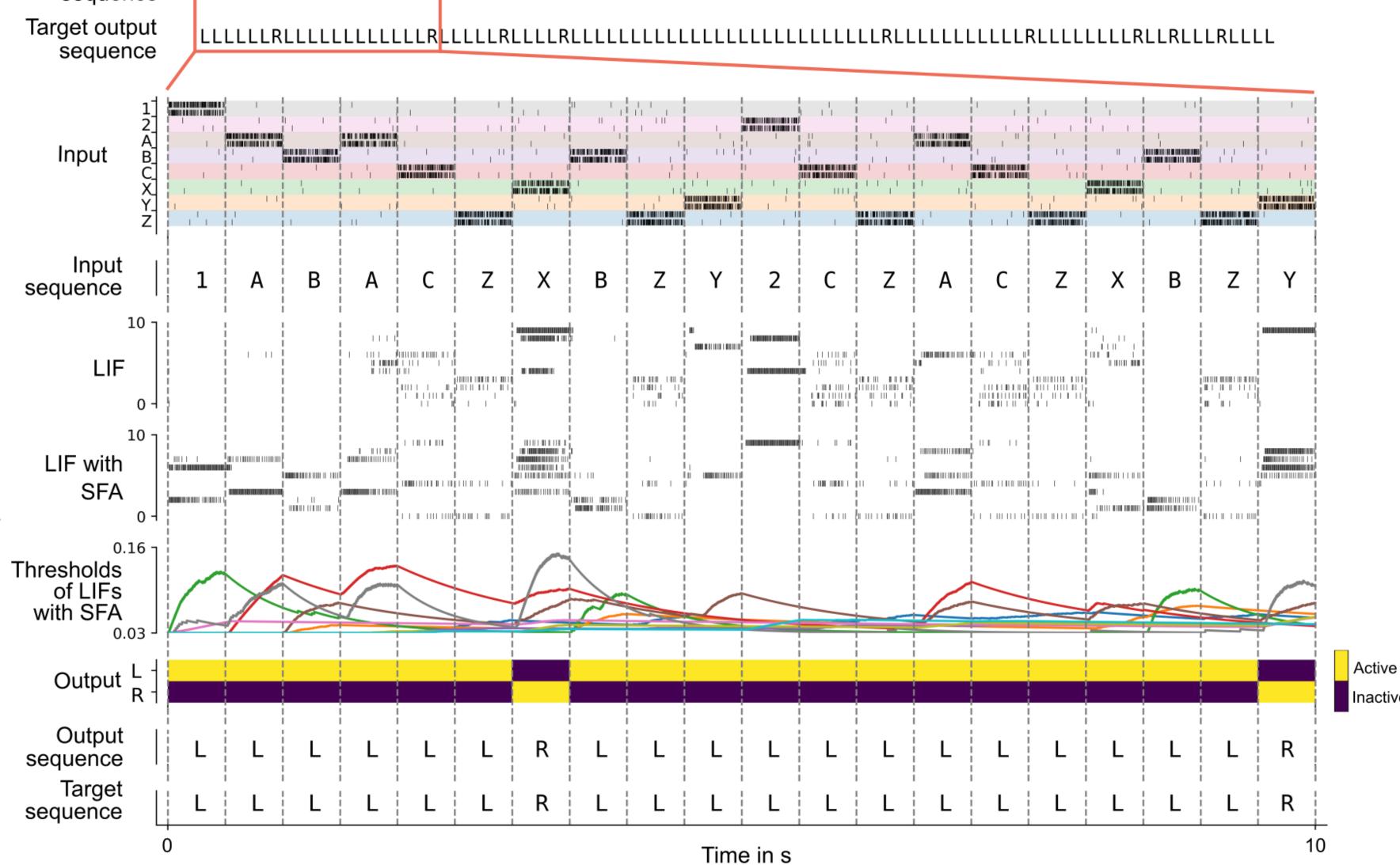
- Increasing difficulty by adding distractor letters
 C and Z between relevant letters
- With distractor letters, information has to be maintained on two levels:
 - Most recent relevant digit
 - Most recent relevant letter

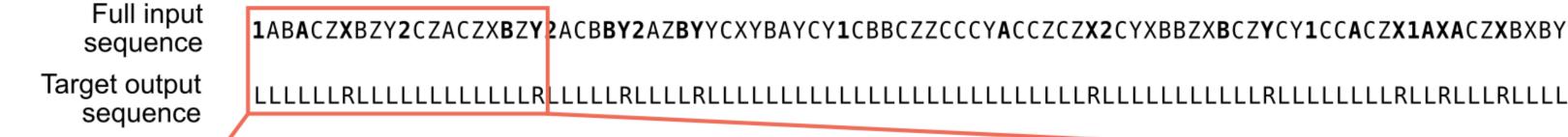
^[7] Frank et al., 2001. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognitive, Affective, & Behavioral Neuroscience. [8] O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural computation.

Performance: 97.79% of test trials with all correct outputs L and R.

No need for hierarchical WM, as e.g., in [8].

[8] O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural computation.

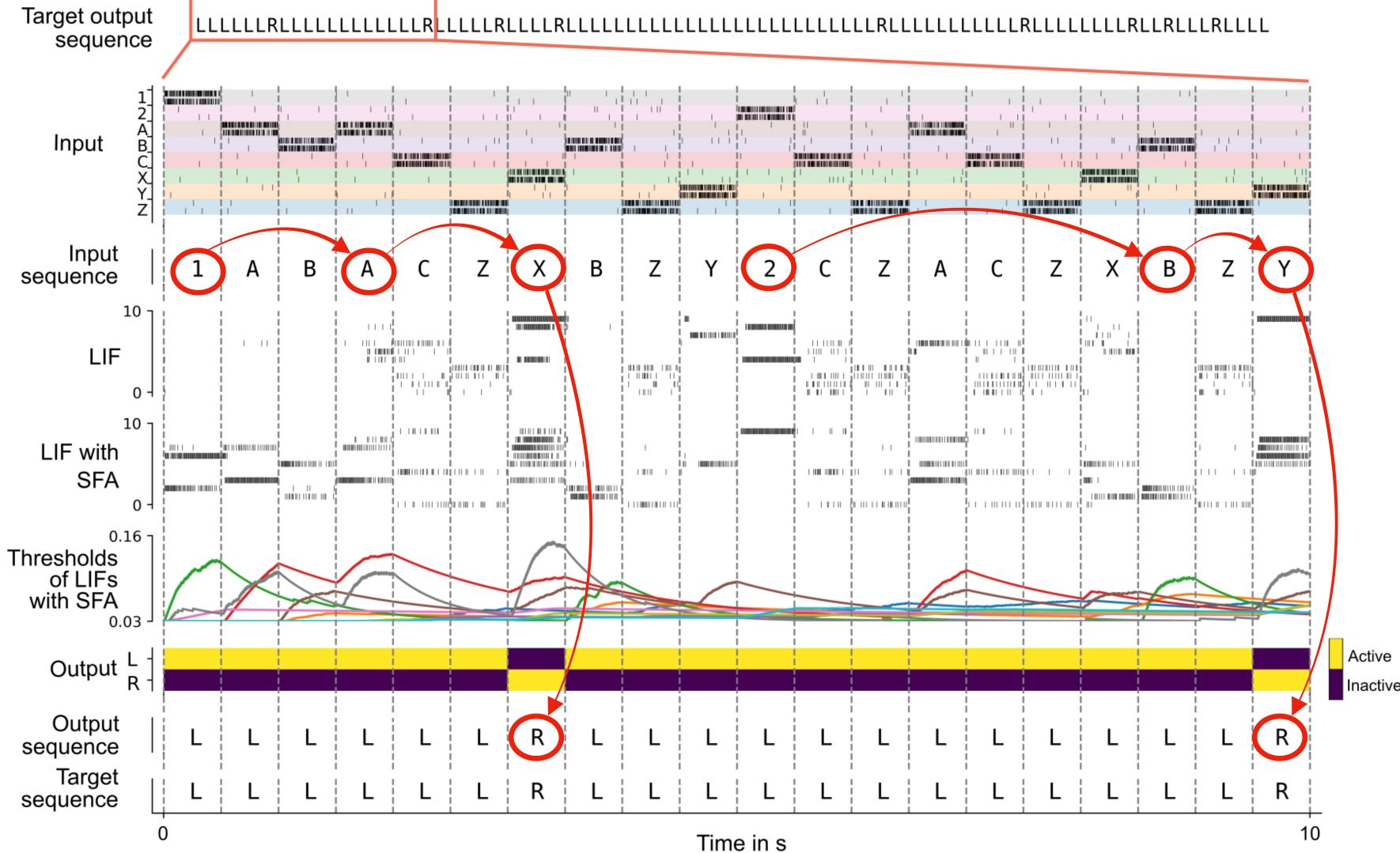


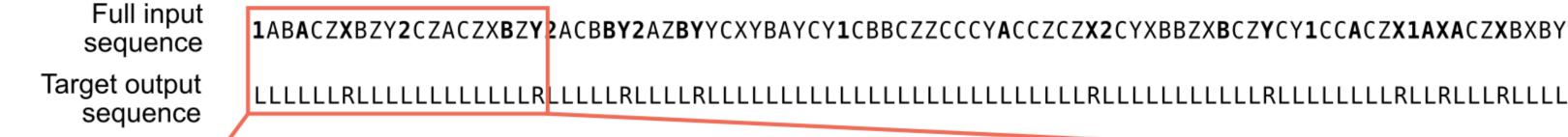


Performance: 97.79% of test trials with all correct outputs L and R.

No need for hierarchical WM, as e.g., in [8].

[8] O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural computation.

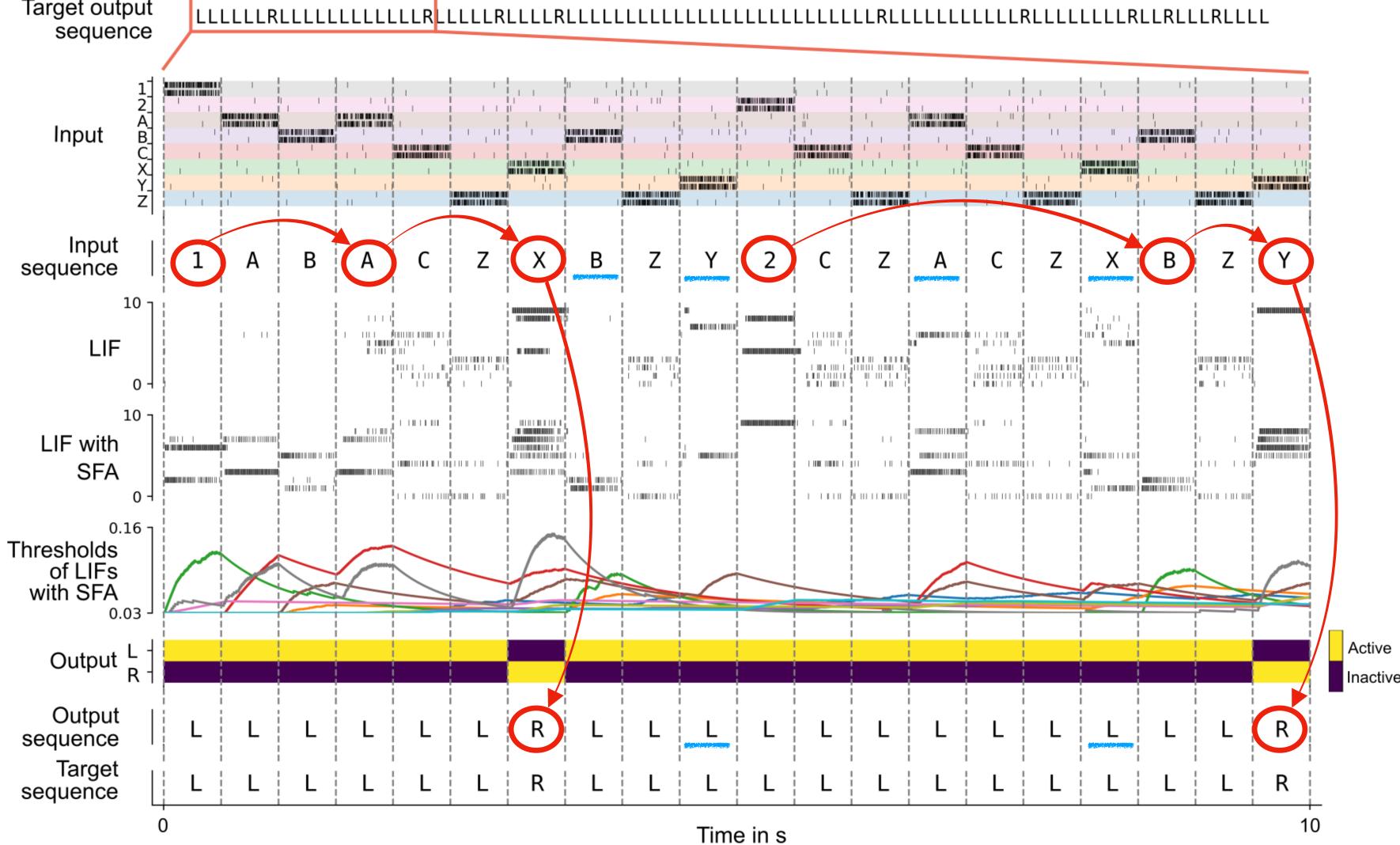




Performance: 97.79% of test trials with all correct outputs L and R.

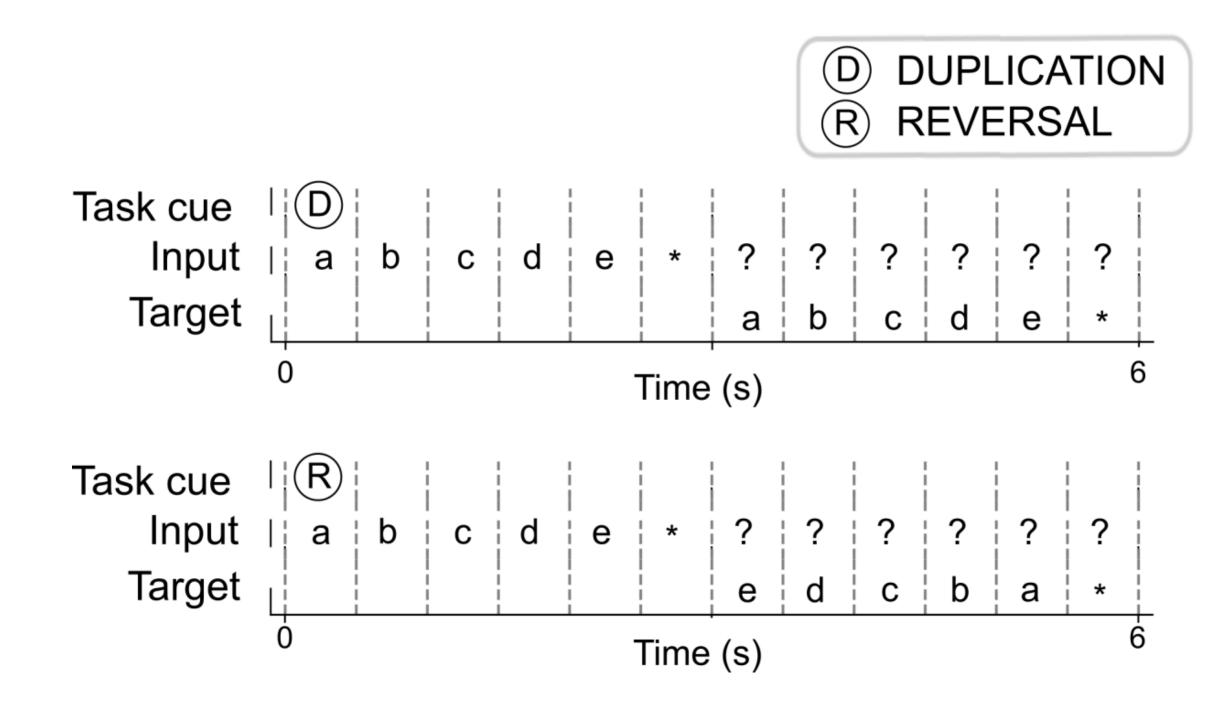
No need for hierarchical WM, as e.g., in [8].

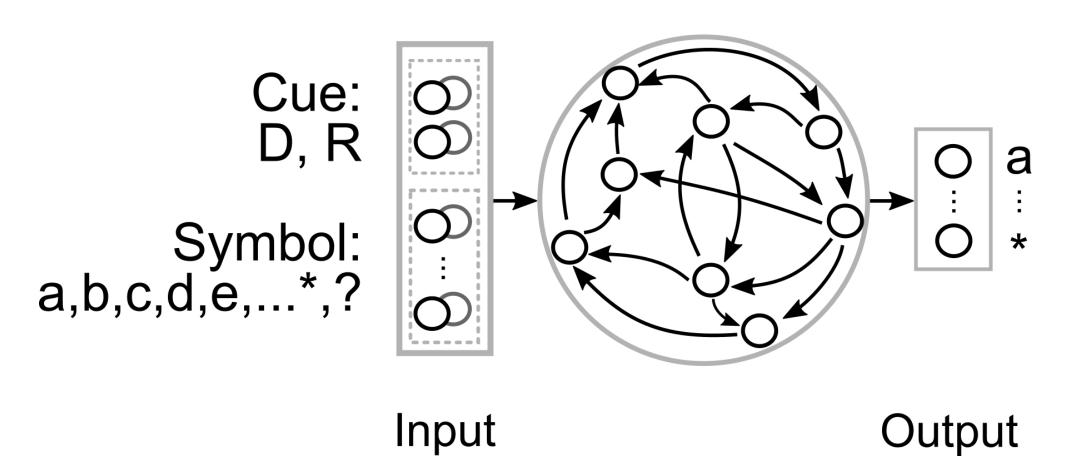
[8] O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. *Neural computation*.



SNNs with SFA learn complex operations on sequences of symbols

Sequence manipulation tasks [9, 10]





Performance: 95.88% of test sequences (unseen during training) fully correct.

Selectivity of neurons

1.0

Fraction

SNNs with SFA learn complex operations on sequences of symbols

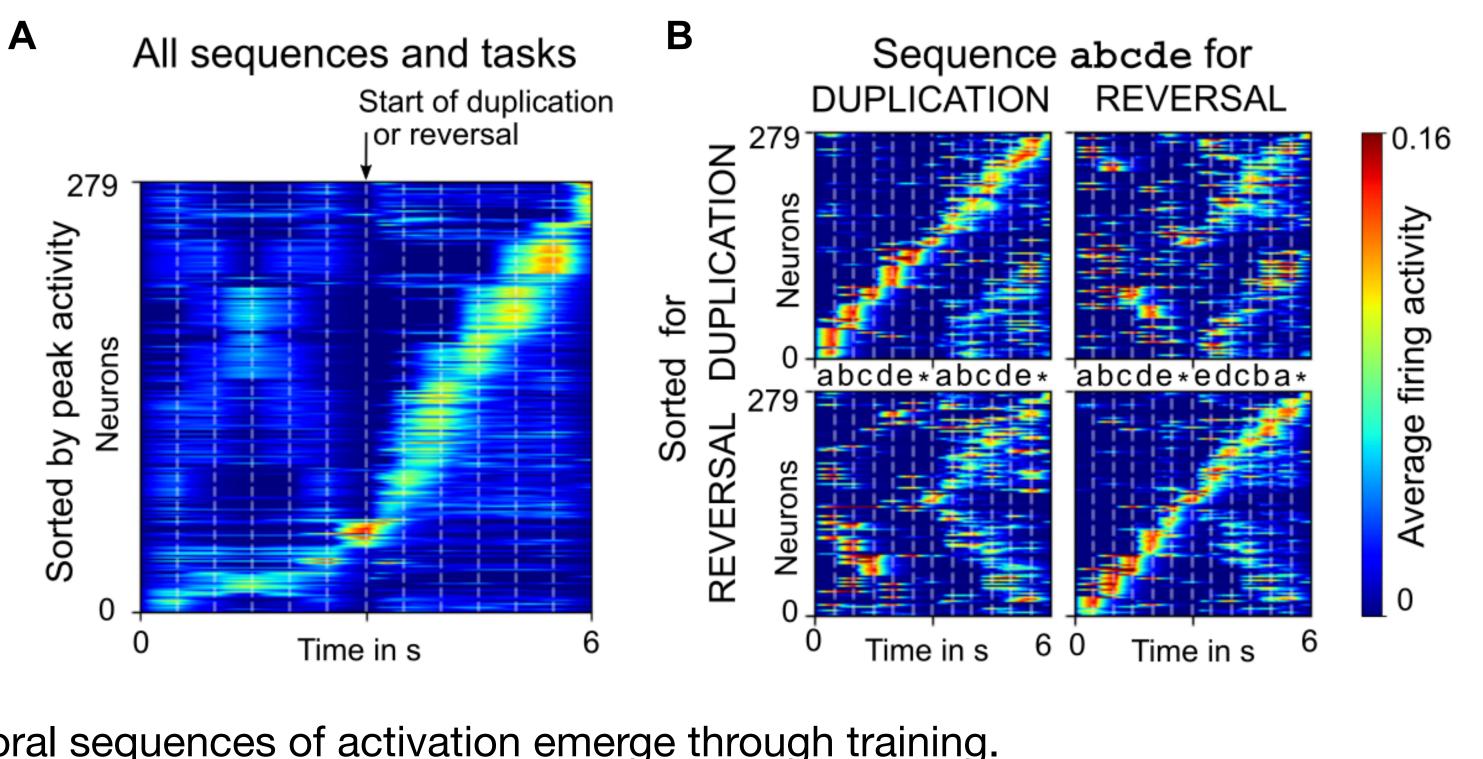


Fig. A, B: Temporal sequences of activation emerge through training.

Fig. B: Neurons change their preference depending on the task, as early as during the loading of the input sequence.

Fig. C: A large fraction of neurons are mixed-selective, similarly as in [10, 11].

^[10] Barone, P., & Joseph, J. P. (1989). Prefrontal cortex and spatial sequencing in macaque monkey. Experimental brain research. [11] Rigotti et al., 2013. The importance of mixed selectivity in complex cognitive tasks. Nature.

Conclusion

- SFA enables SNNs to integrate information into ongoing network computations (on time scale of seconds)
 - Without SFA mechanisms, SNNs achieved performance of 0%
- A generic rather than specific neural circuitry suffices for implementing a form of hierarchical working memory
- No special-purpose circuits for performing arithmetics (not covered in this presentation)
- Implementation of working memory (not covered in this presentation)
- Emergent neural codes of a trained SNN resemble neural codes from experiments with monkeys
 - Diversity of neural codes emerged (mixed-selectivity)
 - A possibility for uncovering the computational primitives of the brain

Part 2: Fault pruning: Robust training of neural networks with memristive weights

Kraišniković, C., Stathopoulos, S., Prodromakis, T., & Legenstein, R. (2023). Fault pruning: Robust training of neural networks with memristive weights. In *International Conference on Unconventional Computation and Natural Computation*.

Memristors [12, 13, 14]

- Analog non-volatile devices ("memory resistors")
- Resistance R serves as a probed state variable

Advantages

- Can be integrated with ultra-high density
- Suited for implementation of matrix-vector multiplications
- Low-power consumption

Challenges

- Fabrication, operational constraints
- Limited endurance of the devices
- Yield and repeatability issues

^[12] Chua, L. (1971). Memristor-the missing circuit element. *IEEE Transactions on circuit theory*.

^[13] Strukov et al., 2008. The missing memristor found. Nature.

^[14] Indiveri et al., 2013. Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology.

Memristive neural network training

- Faulty behavior of memristors [15]
 - Stuck memristors
 - Faulty updates
 - Concordant faults
 - Discordant faults
 - Negative consequences on network performance
- Our approach
 - Analyze impact of faulty memristor behavior on neural network training
 - Strategy: use Fault pruning

Fault pruning: Detection of faults during training and pruning of connections on the fly

Memristive neural network training

• Mapping resistance $R_i \in [R_{\min}, R_{\max}]$ to weight $w_i \in [w_{\min}, w_{\max}]$:

$$w_i = \alpha \left(\frac{1}{R_i} - \frac{1}{R_C}\right)$$

Inverse mapping from weight to resistance:

$$R_i = \frac{1}{\frac{1}{R_{\mathbf{C}}} + \frac{w_i}{\alpha}}$$

Weight and resistance updates:

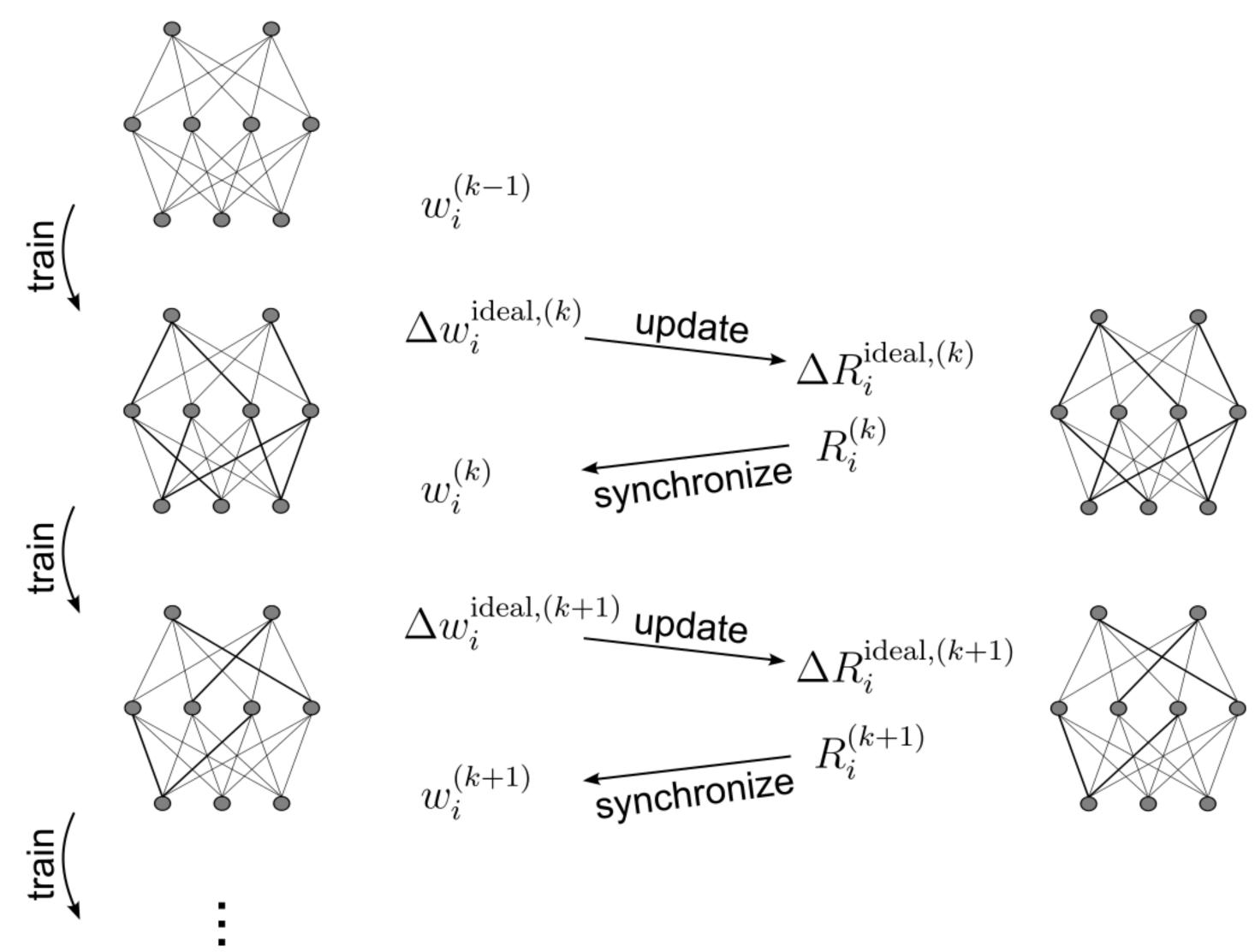
$$\Delta w_i = w_i^{(k)} - w_i^{(k-1)}$$

$$\Delta R_i = R_i^{(k)} - R_i^{(k-1)}$$

In-the-loop training [16, 17]

High-precision network

Memristive network

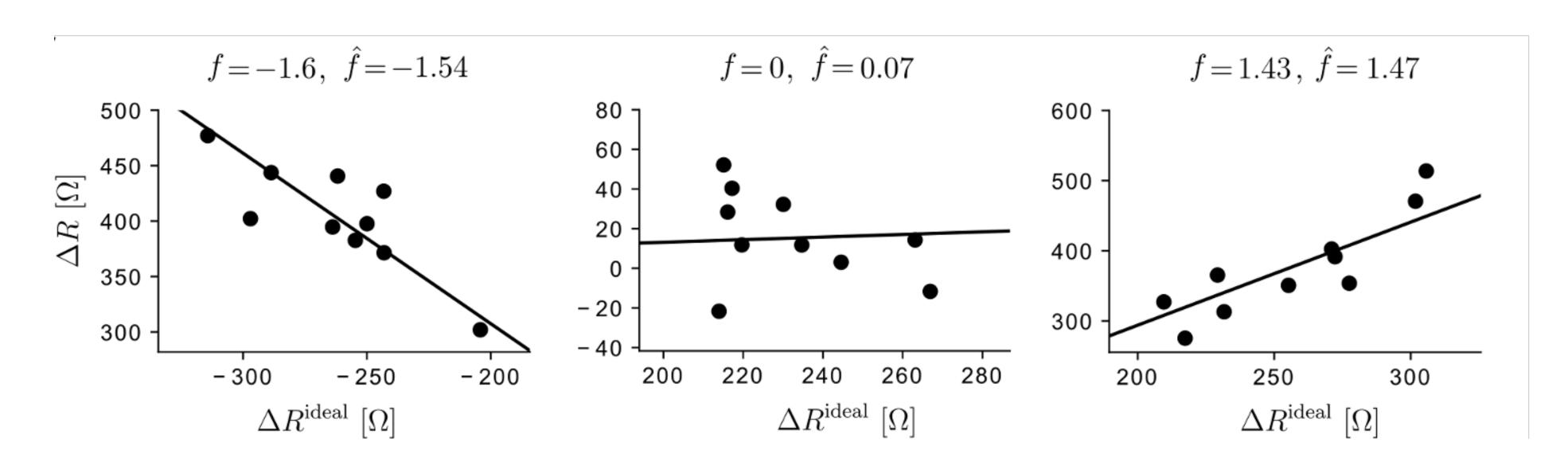


[16] Schmitt et al., 2017. Neuromorphic hardware in the loop: Training a deep spiking network on the brainscales wafer-scale system. *IJCNN*.

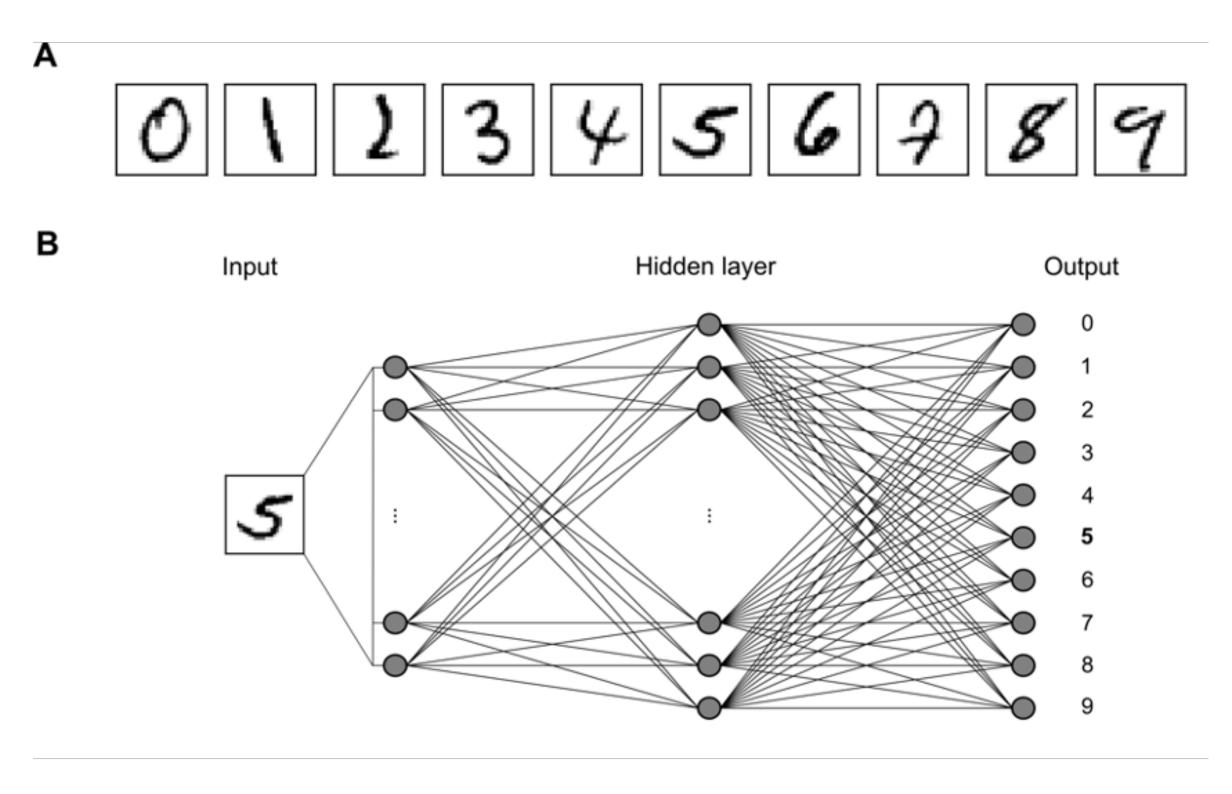
[17] Woźniak et al., 2020. Deep learning incorporating biologically inspired neural dynamics and in-memory computing. Nature Machine Intelligence.

Model of imperfect memristor

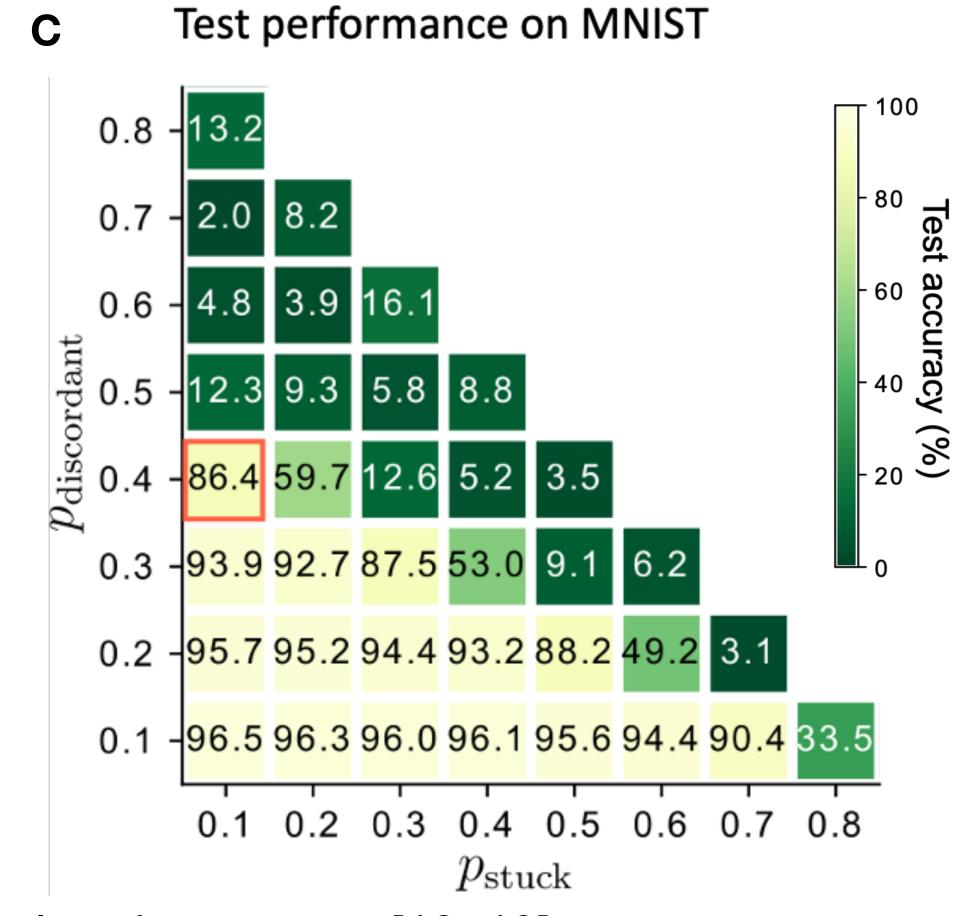
- Memristor faults modeled by fault factor f_i
 - Modulates resistance change: $\Delta R_i^{(k)} = f_i \cdot \Delta R_i^{\text{ideal},(k)} + \eta_i^{(k)}$
 - Stuck memristors: $f_i = 0$
 - Concordant faults: $f_i > 0$
 - Discordant faults: $f_i < 0$



The MNIST task



Discordant memristive changes are detrimental.



Neural networks can be pruned significantly and achieve little loss in accuracy [18, 19], hence we asked if one can prune faulty memristive connections.

^[18] Bellec et al., 2017. Deep rewiring: training very sparse deep networks. In *International Conference on Learning Representations (ICLR)*. [19] Liu et al., 2019. Rethinking the value of network pruning. In *International Conference on Learning Representations (ICLR)*.

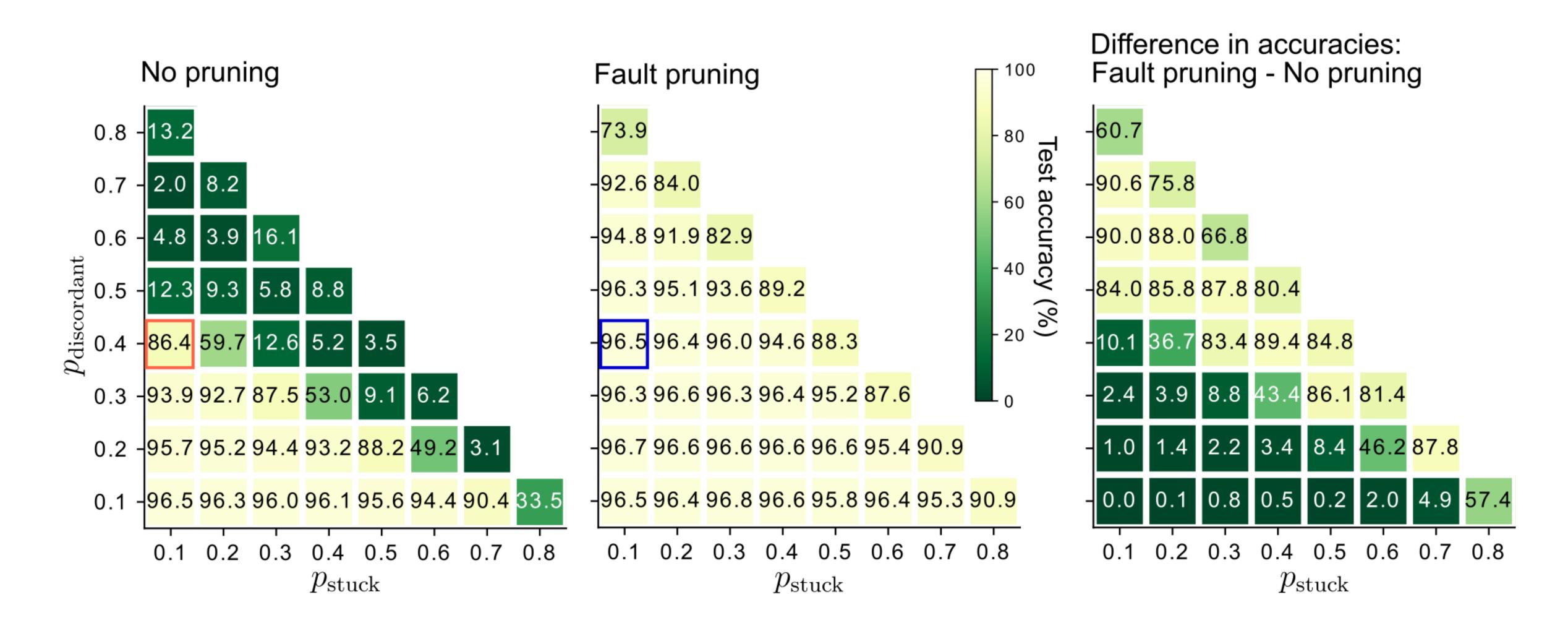
Fault pruning algorithm

• Estimate fault factor over a window of previous updates:

$$\hat{f}_{i} = \frac{\sum_{l} \Delta R_{i}^{\text{ideal},(l)} \Delta R_{i}^{(l)}}{\sum_{l} \left(\Delta R_{i}^{\text{ideal},(l)}\right)^{2}}$$

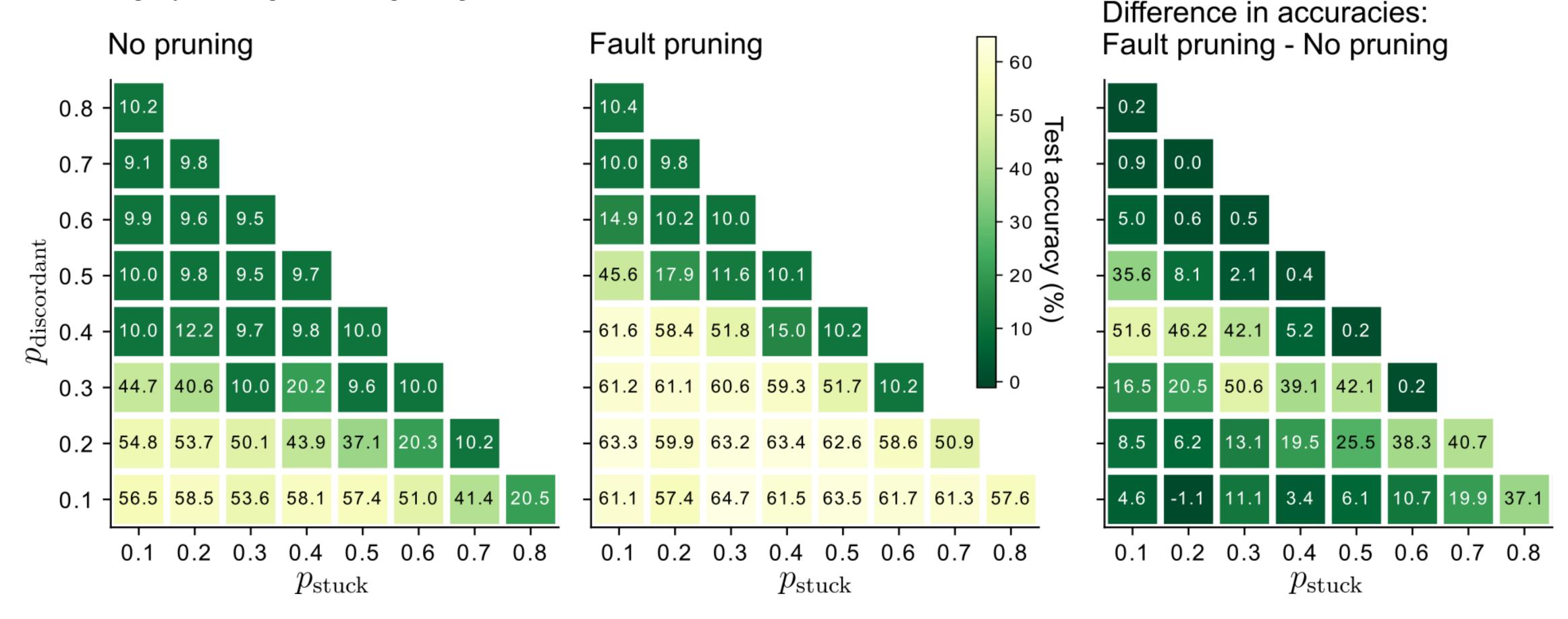
- Remove detected unreliable memristors from the network if $\hat{f}_i < \theta$, and we set $\theta = 0.1$
- Two variants of the algorithm
 - Variant 1: Prune faulty weights (set to zero)
 - Variant 2: Don't update faulty weights (keep last weight)

Results on MNIST



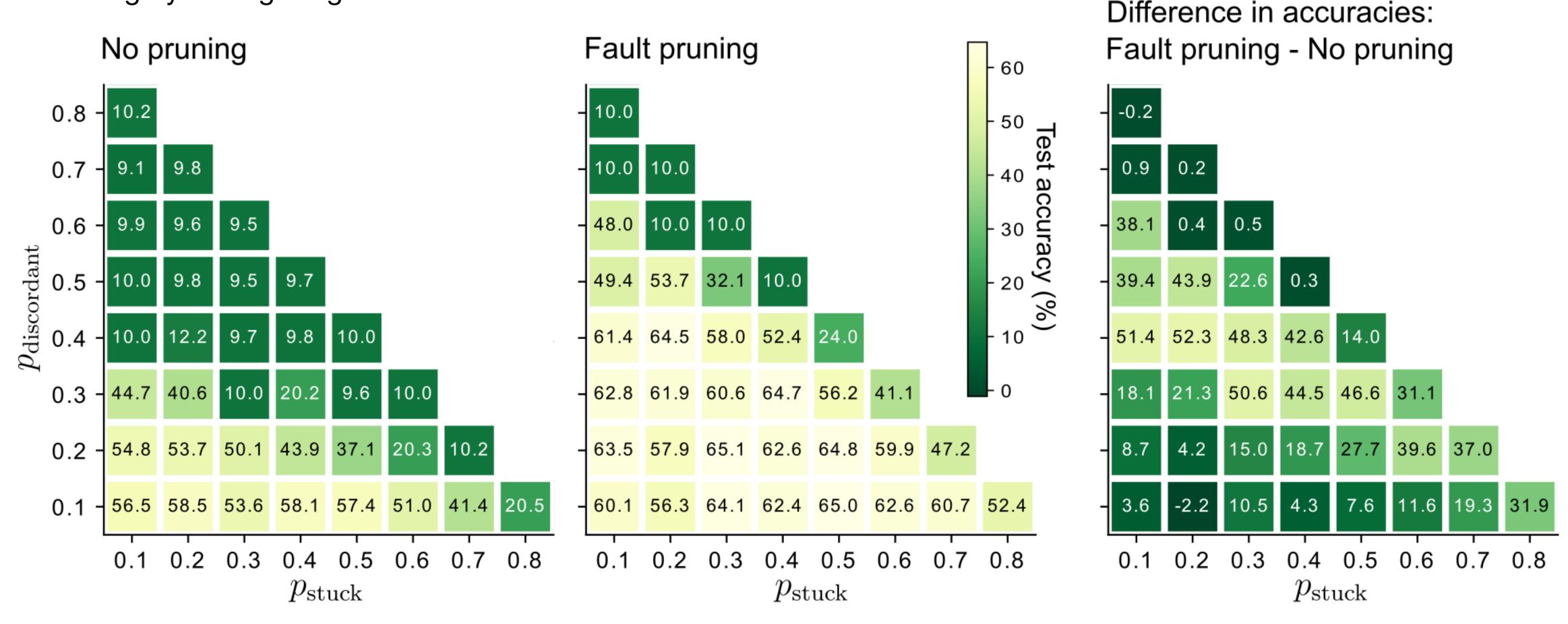
Results on CIFAR-10

- Convolutional Neural Network (CNN), LeNet [20]
- Pruning by setting "freezing weights"



Results on CIFAR-10

- Convolutional Neural Network (CNN), LeNet [20]
- Pruning by setting weights to zero



Conclusion

- Fault pruning managed to preserve very good performance
- General approach, independent of the network structure and trained tasks
- Estimation of faults on the fly, and acting accordingly
- A simple linear regression for estimation of faults
 - Can be substituted by more advanced approaches

Summary and contributions of the thesis

Spike-based models for cognitive computations and robust training of memristive neural networks

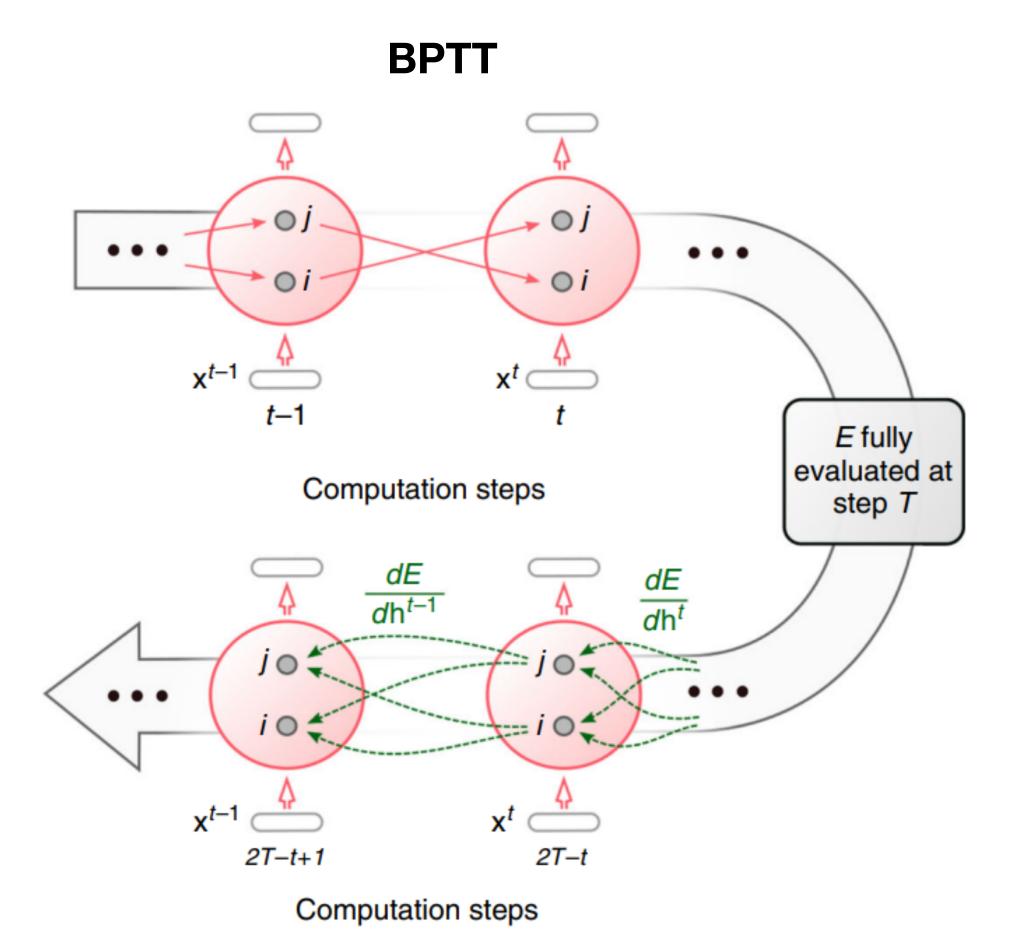
- Spike-based models can solve complex cognitive tasks
- Such models can then be used to ask questions about the brain
- Robust training will likely be crucial as integration density of memristive crossbars increases
- PhD thesis contribution: a (preliminary) step towards the implementation of (cognitive) brain-like neural networks in silico

Thank you for listening! Questions?

Cognitive processing in the brain

- Working memory
 - Supported by the prefrontal cortex
 - Information encoding, maintenance and manipulation
 - Dynamic and flexible
 - Context-dependent processing

Training algorithms



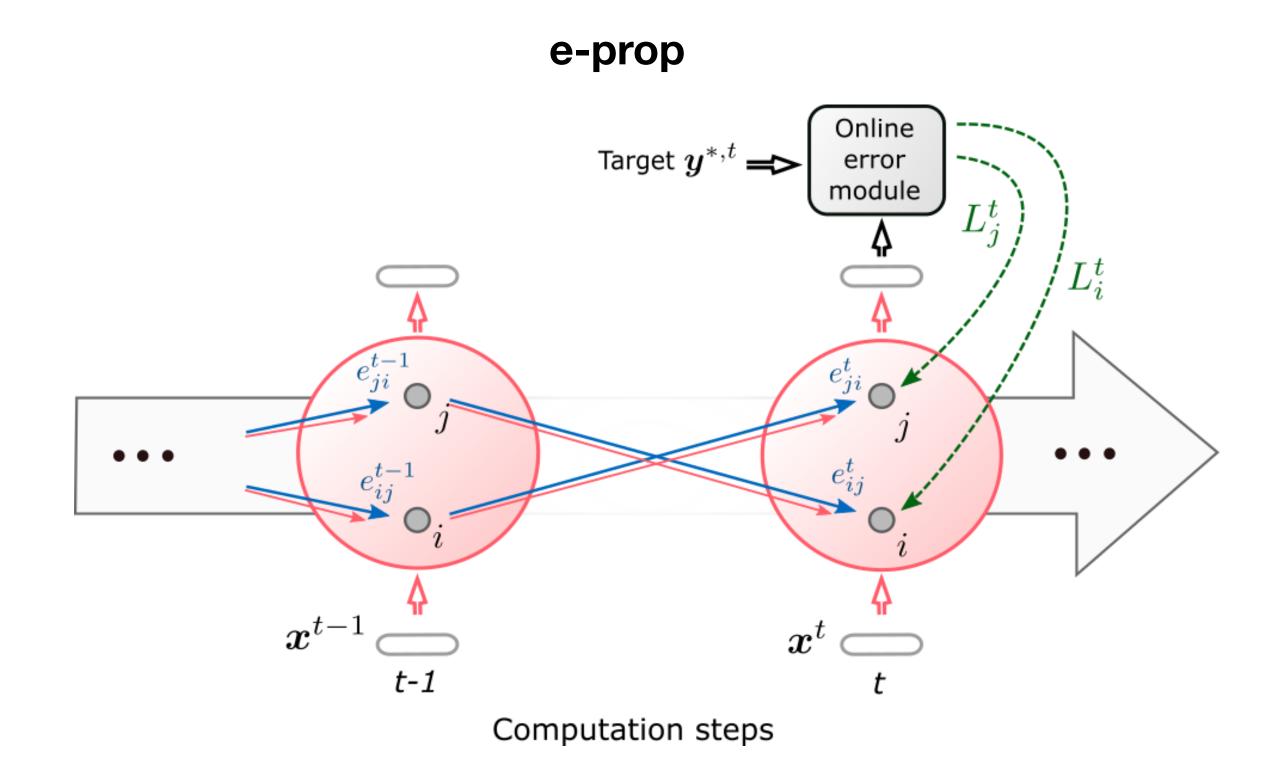


Image source: Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. *Nature communications*, 11(1), 3625.

LIF with SFA neuron model

LIF neuron dynamics:

$$\tau_m \dot{V}_j(t) = -V_j(t) + R_m I_j(t)$$

In discrete time:

$$\begin{split} V_j(t+\delta t) &= \alpha V_j(t) + (1-\alpha)R_m I_j(t) - v_{\mbox{th}} z_j(t) \delta t, \\ \alpha &= \exp(-\frac{\delta t}{\tau_m}), \\ z_j(t) &= H\left(\frac{V_j(t) - v_{\mbox{th}}}{v_{\mbox{th}}}\right) \frac{1}{\delta t}, \quad \mbox{with } H(x) = 0 \mbox{ if } x < 0 \mbox{ and } 1 \mbox{ otherwise.} \\ I_j(t) &= \sum_i W_{ji}^{\mbox{in}} x_i(t-d_{ji}^{\mbox{in}}) + \sum_i W_{ji}^{\mbox{rec}} z_i(t-d_{ji}^{\mbox{rec}}) \end{split}$$

Adaptive threshold:

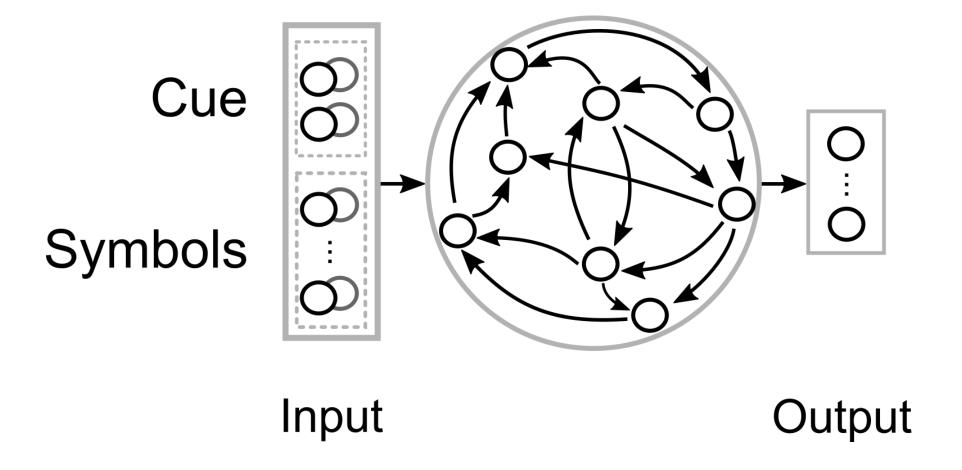
$$A_{j}(t) = v_{th} + \beta a_{j}(t),$$

$$a_{j}(t+1) = \rho_{j}a_{j}(t) + (1 - \rho_{j})z_{j}(t),$$

$$\rho_{j} = \exp\left(\frac{-\delta t}{\tau_{a,j}}\right)$$

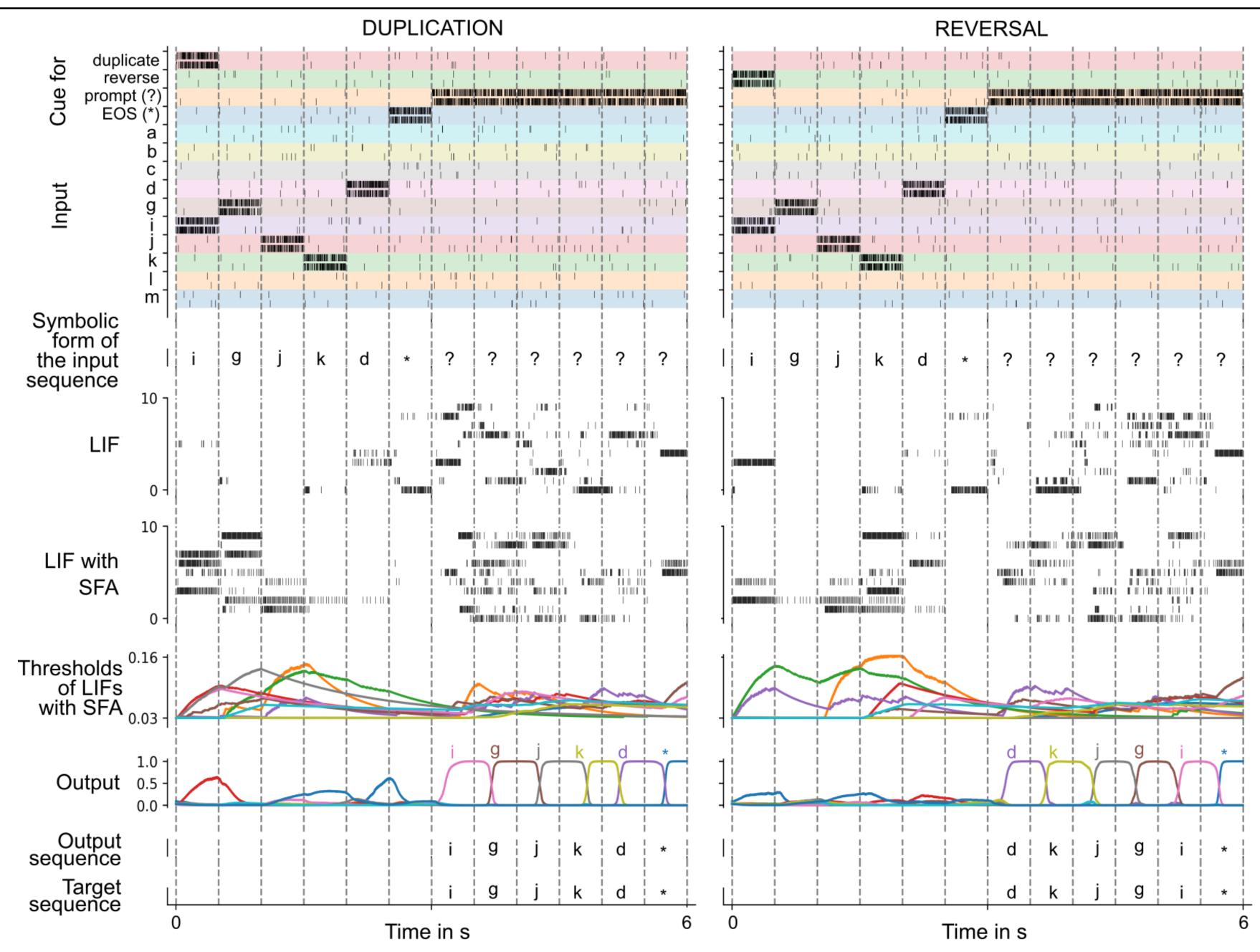
Neural network architecture

Recurrent network of a mixture of LIF neurons with and without SFA

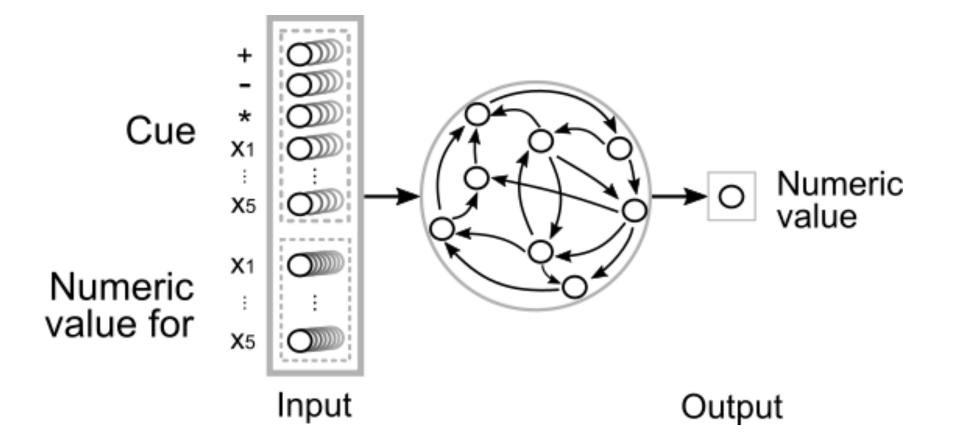


Recurrent network of spiking neurons, because:

- we are solving temporal computing tasks
- neural networks in the brain are highly recurrent
- spike-based communication of the brain is energy-efficient → investigating what would be feasible to implement in energy-efficient, neuromorphic hardware



- Variables and numbers encoded into spiking activity
- The network learns the binding "variable concrete value", and evaluates given expressions in real time



An example trial: $(((((x_2 * x_4) * x_5) * x_3) - x_3) + x_5)$

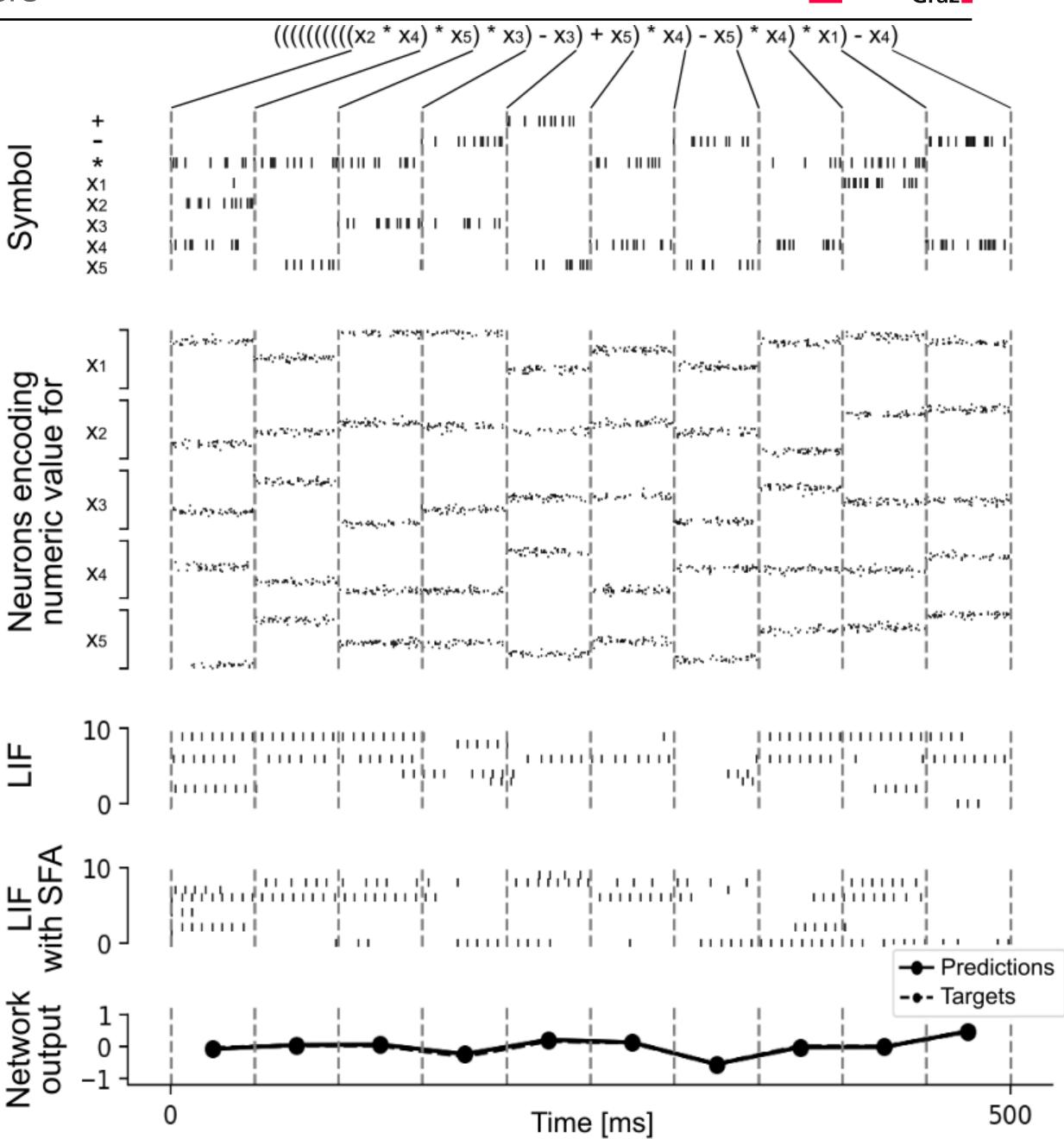
Input	0.	X 2 * X 4 4999*(-0.11	13) -0	r ₁ * X ₅ .0794)*(-0.	71)¦	r ₂ * X ₃ 0.051*0.8209		r ₃ - X ₃ 0.0629-0.3314	. (-0	r ₄ + X ₅ 0.2308)+0.47	'17¦
Output		= r ₁ -0.0794		= r ₂ 0.051		= r ₃ 0.0629		= r ₄ -0.2308		= r ₅ 0.2096	
Target	<u> </u>	-0.0553	-	0.0564		0.0419	<u> </u>	-0.2685		0.2409	<u> </u> 250
	J	Time [ms]									_00

33

- Variables and numbers encoded into spiking activity
- The network learns the binding "variable concrete value", and evaluates given expressions in real time

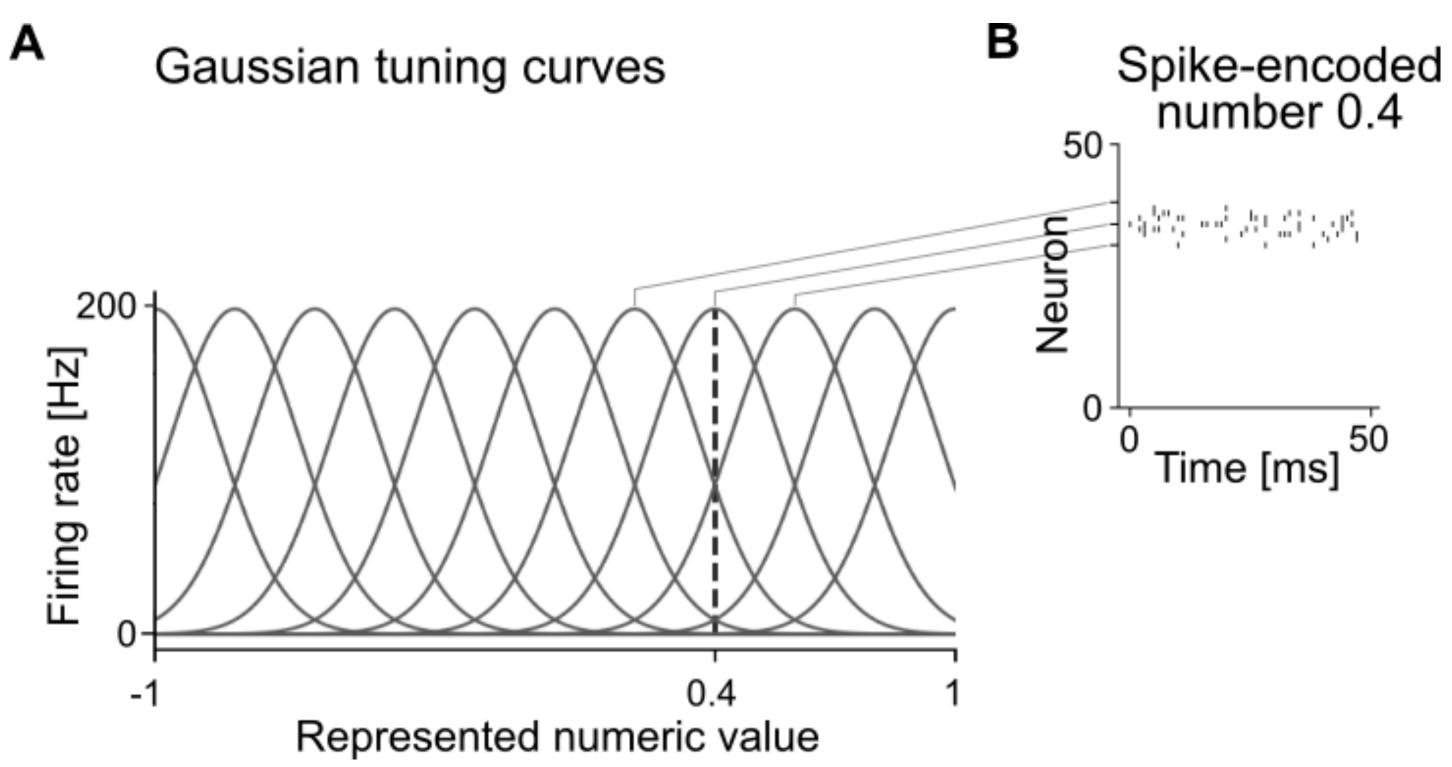
Performance:

MSE: 0.0341, MAE: 0.1307



Step i	Arith. expression	Numeric expression	Output r _i	Target	Absolute error
1.	$x_2 * x_4$	0.4966 * (-0.1113)	-0.0794	-0.0553	0.0241
2.	$r_1 * x_5$	(-0.0794) * (-0.7100)	0.0510	0.0564	0.0054
3.	$r_2 * x_3$	0.0510 * 0.8209	0.0629	0.0419	0.0210
4.	$r_3 - x_3$	0.0629 - 0.3314	-0.2308	-0.2685	0.0377
5.	$r_4 + x_5$	(-0.2308) + 0.4717	0.2096	0.2409	0.0313
6.	$r_5 * x_4$	0.2096 * 0.7014	0.1304	0.1470	0.0166
7.	r ₆ - x ₅	0.1304 - 0.6650	-0.5417	-0.5346	0.0071
8.	$r_7 * x_4$	(-0.5417) * (-0.0165)	-0.0222	0.0089	0.0311
9.	$r_8 * x_1$	(-0.0222) * (-0.8182)	-0.0128	0.0182	0.0310
10.	r9 - x4	(-0.0128) - (-0.4727)	0.4739	0.4599	0.0140

Table 1. Evaluation of nested arithmetic expressions with an SNN.



50 input neurons encode uniformly distributed numeric values from [-1, 1]. They fire with a particular mean on that analog value, and std of 0.08:

$$f_i = f_{\text{max}} \exp\left(-\frac{(m_i - z)^2}{2\sigma^2}\right),\,$$

 $f_{\text{max}} = 200$ Hz, m_i the value for which the neuron is responsible, and z_i a value from the input domain.

Motivation

- Artificial Intelligence (AI): large amounts of data processed, demands on computing speed and efficiency
- Neuro-inspired chips
 - Main features: neuron-synapse structure, in-memory computation, learning capabilities
 - Information is stored in the form of synaptic weights
 - Synaptic plasticity: ability to increase or decrease synaptic weights by means of changes in conductance

Motivation

Key metrics for performance evaluation

- Computing density
- Energy-efficiency
- Computing accuracy: influenced by non-idealities of devices
- Learning capabilities: off-chip, on-chip, hybrid

Our focus

- Resistive Random Access Memory devices (RRAM, "memristors")
- Improving energy-efficiency
- Learning "in-the-loop"
 - Robust training of neural networks with memristive weights
 - Detection of faulty memristors
 - Improving computing accuracy

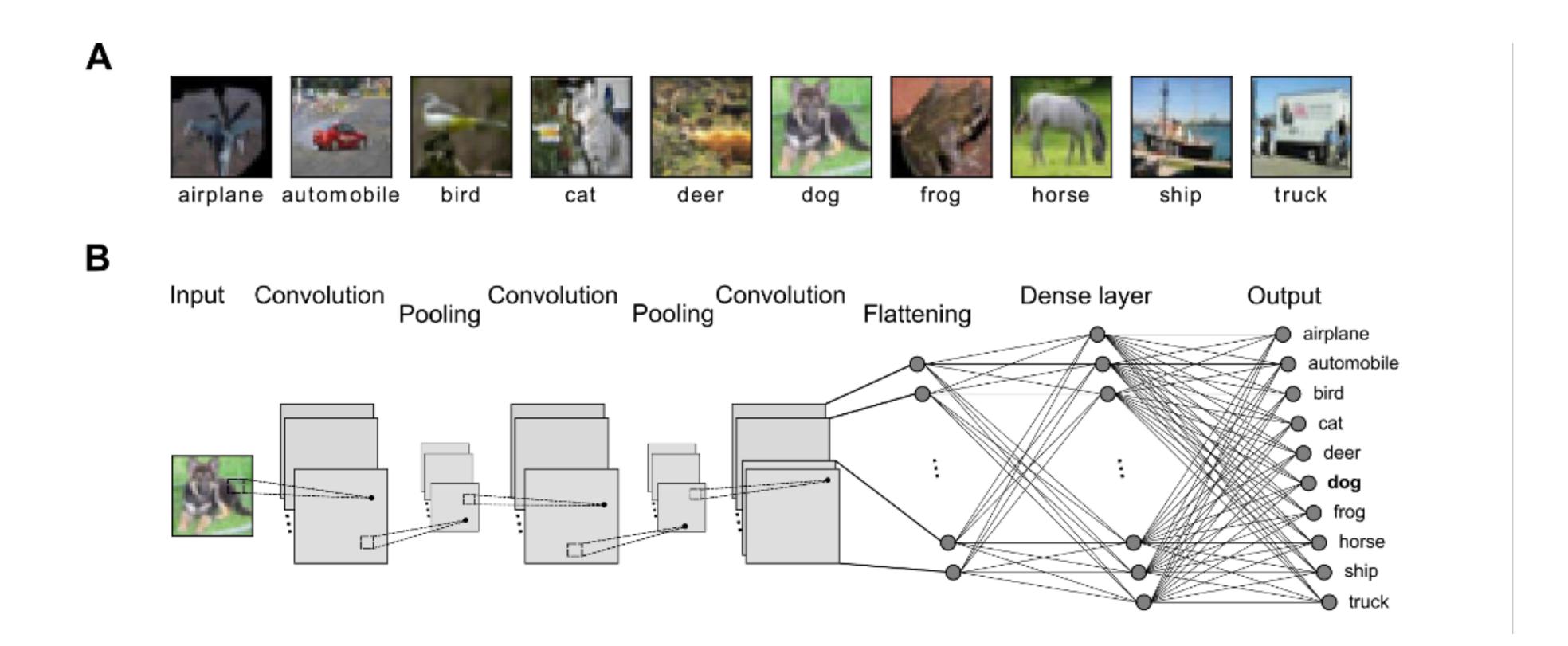
Estimation of the fault factors \hat{f}_i

$$\Delta R_i = \hat{f}_i \cdot \Delta R_i^{\text{ideal}} + \epsilon$$

- Estimated from N=10 data points $(\Delta R_i^{\mathsf{ideal},(l)}, \Delta R_i^{(l)}), \ l \in \{k-N+1, k-N+2, \dots, k-1, k\}$
- The least-squares estimator of \hat{f}_i minimises the error:

$$\begin{split} \mathcal{L}(\hat{f}_i) := \sum_{l} \left(\Delta R_i^{(l)} - \hat{f}_i \cdot \Delta R_i^{\mathsf{ideal},(l)} \right)^2, \\ \frac{\partial \mathcal{L}}{\partial \hat{f}_i} = 2 \sum_{l} \left(\Delta R_i^{(l)} - \hat{f}_i \cdot \Delta R_i^{\mathsf{ideal},(l)} \right) \left(-\Delta R_i^{\mathsf{ideal},(l)} \right) \stackrel{!}{=} 0 \\ \hat{f}_i \sum_{l} \left(\Delta R_i^{\mathsf{ideal},(l)} \right)^2 = \sum_{l} \Delta R_i^{(l)} \Delta R_i^{\mathsf{ideal},(l)} \\ \hat{f}_i = \frac{\sum_{l} \Delta R_i^{(l)} \Delta R_i^{\mathsf{ideal},(l)}}{\sum_{l} \left(\Delta R_i^{\mathsf{ideal},(l)} \right)^2} \end{split}$$

Results on CIFAR-10



LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10), 1995.

Connectivity in the network after pruning

